Evaluation of Operating Experience with Regard to Passive Mechanical Components Approach and New Insights
Introduction

- Intention of this presentation
 - to share knowledge gained from 35 years of experience
 - to provide information on the GRS approach
 - to present examples of recent generic studies

- Focus on passive mechanical components (PMCs)
 - pressurised components
 - RPV internals

- A few questions on OE evaluation
 - Where to get the necessary data from and how to store them?
 - How to evaluate the available data?
 - How to make the gained insights retrievable for future work?
GRS approach

Operating experience with German NPPs
- VERA DB
- KomPass & Internal DBs

Operating experience with foreign NPPs
- IRS DB
- CODAP DB

Detailed evaluation of individual events

Generic evaluations on different levels

Position Papers

Information Notices

Technical Reports

Knowledge base on degradation mechanisms "ALMA MATER"
Databases used at GRS for evaluation of OE with PMCs

<table>
<thead>
<tr>
<th>Database</th>
<th>No. of records</th>
<th>Acquisition period</th>
<th>Scope</th>
<th>Criteria for data capture</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERA</td>
<td>~ 6,000</td>
<td>since 1965</td>
<td>SCCs</td>
<td>Reportable events</td>
</tr>
<tr>
<td>KomPass</td>
<td>~ 1,000</td>
<td>since 1972</td>
<td>Pressurised components</td>
<td>Reportable events</td>
</tr>
<tr>
<td>Internals</td>
<td>~ 100</td>
<td>since 1973</td>
<td>RPV internals</td>
<td>Reportable events</td>
</tr>
<tr>
<td>IRS</td>
<td>~ 3,800</td>
<td>since 1978</td>
<td>SCCs</td>
<td>Selected safety-related events</td>
</tr>
<tr>
<td>CODAP</td>
<td>~ 4,500</td>
<td>since 1970</td>
<td>Pressurised components + RPV internals</td>
<td>Selected safety-related events</td>
</tr>
</tbody>
</table>
Examples of recent generic studies performed

- **Ageing behaviour** of PMCs
 - topic-specific study on behalf of European CH on OEF
- **Environmentally-assisted cracking** in PMCs
 - mechanism-specific study on behalf of BMU
- **Degradation in essential service water systems**
 - system-specific study on behalf of BMU
- **Changes in leak frequencies of piping** over time
 - topic-specific study on behalf of BMWi
Number of ageing-related individual events in PMCs of German NPPs
Number of ageing-related individual events in PMCs of German NPPs

- Number of events remains largely constant over observation period ➔ effective ageing management
- Increase of events in 2007 / 2009: supplementary inspections + change in data capturing
Proportions of degradation mechanisms in PMCs of German NPPs (1990 – 2009)

- **PWR**
 - Corrosion: 74%
 - Corrosion / Fatigue: 17%
 - Fatigue: 6%
 - Other: 3%

- **BWR**
 - Corrosion: 82%
 - Corrosion / Fatigue: 7%
 - Fatigue: 11%
 - Other: 0%

Source: [EUROSAFE](https://www.eurosafe.org)
Proportions of degradation mechanisms in PMCs of German NPPs (1990 – 2009)

Corrosion-related events in PWRs
- 38% Chloride-induced TGSCC
- 20% Shallow pit corrosion
Proportions of degradation mechanisms in PMCs of German NPPs (1990 – 2009)

Corrosion-related events in PWRs
- 38% Chloride-induced TGSCC
- 20% Shallow pit corrosion

Corrosion-related events in BWRs
- 32% Chloride-induced TGSCC
- 18% SICC and FAC each
- 12% Shallow pit corrosion
- 9% IGSCC
Number of individual events due to chloride-induced TGSCC in German NPPs by calendar year

![Graph showing the number of individual events due to chloride-induced TGSCC in German NPPs by calendar year.](image)
Number of individual events due to chloride-induced TGSCC in German NPPs by calendar year

- Several components made of SS affected
- Cracks initiated from inner and outer surface
- Direct safety impact low
 - majority of cracks were found in small pipes
 - in most cases non-through-wall cracks / minor leakage
- Potential safety impact
 - pipe rupture with unisolable leakage
 - degradation of redundant trains of safety systems
Safety-related events due to chloride-induced TGSCC in German NPPs and events which induced INs
Safety-related events due to chloride-induced TGSCC in German NPPs and events which induced INs

- Avoid any contact of chlorides with components made of SS
 - identify any chloride sources
 - identify areas where accumulation of chlorides may occur

- Measures taken in German plants
 - specification of adhesives, gaskets, lubricants, etc.
 - supplementary inspections + enhancement of ISI programmes
 - repair or replacement of components with cracks

- Is chloride-induced TGSCC from inner surface a specific issue in German NPPs only and, if so, why?
Events due to degradation of piping in essential service water systems of German NPPs (1974-2009)
Events due to degradation of piping in essential service water systems of German NPPs (1974-2009)

- 44 events identified
- 3 of them affecting buried piping only
Events in piping of essential service water systems of German NPPs (1997-2009)

by nominal size ranges

by degradation mechanisms

- Corrosion 43 %
- Manufacturing/corrosion 20 %
- Manufacturing 5 %
- Overload 5 %
- Mechanical impact/corrosion 25 %
- Fatigue 2 %

Total: 44
Events in piping of essential service water systems of German NPPs (1997-2009) by nominal size ranges

- Piping of all ranges affected
- Events in piping of NB ≥ 400 mm only reported from older plants
- Majority identified by walk-downs, in large piping within ISI
Events in piping of essential service water systems of German NPPs (1997-2009)

- Through-wall shallow pits in piping made of LAS
- Coating failure due to
 - manufacturing defects
 - mechanical impact
- Areas with stagnant / turbulent flow conditions
- New insights from OEF have been considered in KTA 3211.4 (ISI schedule)

by degradation mechanisms

- Corrosion 43%
- Mechanical impact/corrosion 25%
- Manufacturing/Corrosion 20%
- Overload 5%
- Manufacturing 5%
- Fatigue 2%
Leak frequencies of safety-related piping in German BWRs depending on the root cause by calendar year
Leak frequencies of safety-related piping in German BWRs depending on the root cause by calendar year

- Leak events initiated by various root causes / degradation mechanisms
- No mechanism dominated over the total period of observation
- Significant decreasing trend only recognisable for mechanical fatigue
Leak frequencies of safety-related piping in German plants with PWR depending on location of damage
Leak frequencies of safety-related piping in German plants with PWR depending on location of damage

- Leaks occurring in base material gained in importance
- Reconsideration of criteria for leak-relevant positions
Conclusions

- GRS is evaluating OE in order to early identify changes in the reliability of PMCs and corresponding safety issues
- GRS has established appropriate data and knowledge bases as well as tools and methods for this
- For German NPPs, results confirm robustness of component design and effectiveness of measures taken, such as
 - extended plant monitoring
 - optimisation of operating conditions
 - enhancement of ISI programmes and NDE techniques
 - replacement of components sensitive to degradation
 - enforcing technical requirements in codes and standards
 - implementation of target-oriented R&D programmes
Outlook

- Future GRS work on OE evaluation with PMCs will comprise in particular
 - maintaining, updating and extending of available data and knowledge bases
 - further evaluation of available data in a specific way
 - co-operation in international WGs in order to ensure that sufficient information for safety assessment is available

- Generic studies under way / in the pipeline at GRS
 - long-term behaviour of RPV internals (on behalf of BMU)
 - cracks and leaks of the RCPB (CH on OEF)
 - FAC in water-steam cycles (OECD CODAP)