Development and Application of a Radioactive Material Transport Event Database in Germany: A 10-year review of incidents and accidents

G. Schwarz and F.-N. Sentuc
Gesellschaft fuer Anlagen und Reaktorsicherheit (GRS) mbH
Schwertnergasse 1, D-50667 Cologne (Germany)

Abstract:
This paper is an account of work undertaken with the purpose to establish a national radioactive material transport event review and analysis system and presents the principal findings and conclusions of a comprehensive analysis and evaluation of abnormal occurrences and irregularities involving radioactive material shipments in the review period from about 1995 - 2006 in Germany. The 10-year transport event review and analysis results provide evidence that implementation and application of the existing national and international regulatory controls and safety requirements ensure a high level of protection and safety in transport of radioactive material.

1 INTRODUCTION
Every year approximately 700.000 radioactive material packages (consumer goods excluded) are transported within, into and out of Germany by all modes of transport, i.e. on land and water and in the air. The transport involves many types of nuclear and non-nuclear radioactive materials and radiation sources for applications in research, medicine, industry, hydrology, geology, education and nuclear power production in quantities ranging from miniscule amounts to very large quantities of radioactivity of some 100.000 Tera-Becquerel. The great majority of these radioactive material shipments consist of relatively small quantities of radiopharmaceuticals, labelled compounds, radioactive samples, test and gauging sources, radioactive residuals and waste materials and other radionuclide-containing commodities which serve our daily lives. Large quantity shipments of radioactive material such as spent nuclear fuel or high-level radioactive waste account for only a small fraction of the national transport volume.

The transport operations vary considerably in size and complexity and may involve numerous individuals and organisations, e.g. consignors, shipping agents, carriers, and consignees. Road and air are the predominant shipping modes. A significant fraction of these radioactive material shipments are transboundary (international) shipments of packaged radioactive material. With a total volume of about 700.000 radioactive material package shipments per year is Germany - together with France, Belgium and the UK - one of the largest shipper countries of radioactive material in the European Union (EU).

2 THE NEED FOR EXPERIENCE FEEDBACK
For a long time it has been recognised that the special nature of nuclear and non-nuclear radioactive materials represents a unique hazard during transport with the potential to give
rise to a variety of adverse (radiological and/or non-radiological) consequences including, for
example, human health effects, economical and environmental impact and psychological
impact. The transport of radioactive material in the public domain is therefore performed in
conformity with stringent safety standards and performance requirements agreed upon
internationally in order to control the attendant hazards to levels deemed to be acceptable
under both normal and accidental conditions of transport. Under these safety standards and
performance requirements protection and safety is vested principally into the transport
package with minimal reliance on operational controls. Compliance with the relevant safety
and performance requirements is found to be generally very well and has had generally very
favourable results.

However, in spite of all measures taken to achieve and ensure a high level of protection and
safety and to comply with all applicable regulatory and safety requirements, practical
experience shows that non-compliances and abnormal occurrences can and do occur in the
preparation, organisation and undertaking of radioactive material transport operations. Non-
compliances and abnormal occurrences, i.e. deviations from normal performance and
operation conditions by systems and personnel including handling and transport incidents
and accidents - hereinafter referred to as events - may occur for a number of reasons with
different outcomes and safety implications ranging from minor irregularities with insignificant
radiological or non-radiological consequences - if any at all - to serious events involving
abnormal radiation exposures of workers and members of the public. Transport events are
thus consistently a matter of concern to operators, competent authorities, the media and the
general public.

It is therefore important to learn from any such event so that - as far as possible - appropriate
corrective actions can be taken and implemented by both operators and/or competent
authorities to (i) prevent their recurrence, (ii) limit the likelihood and - where relevant - the
consequences of events (e.g. the potentially adverse radiological or non-radiological
consequences), (iii) improve the safety and reliability of transport operations and (iv)
enhance compliance with the relevant transport regulatory and performance requirements.

In order to allow full use to be made of any lessons learned from events requires a
systematic and comprehensive approach to be applied and is generally achieved through the
development, implementation, application and maintenance of an appropriately designed
system of reporting, compilation, analysis and evaluation of the type, nature, effect, cause
and safety significance of such events (experience feedback). The collection and analysis of
event data can also provide useful information feedback to the regulatory process, or to local
operational procedures, to improve protection and safety in transport and is believed to be a
reasonable and pertinent (proactive) approach in driving good operational performance and
minimising non-compliances and human errors. Feedback of experience also increases
knowledge of the operation conditions and performance trends and provides useful data and
guidance for emergency preparedness and response planning and for qualitative and
quantitative safety analyses.

The importance of feedback of operational experience and performance indicators as a
significant tool for the safety of operations involving radioactive material including their
transport and the need for its further improvement is also fully recognised in the Convention
of Nuclear Safety, Article 19, and the IAEA Safety Requirements No. GS-R-1, 2000 [1]. In
line with this safety requirements and internationally accepted good practices, the national
regulatory agencies concerned, i.e. the Ministry for the Environment, Nature Conservation
and Nuclear Safety (BMU) and the Federal Office for Radiation Protection (BfS), have
supported work with the objective:

- To collect, compile, analyse, evaluate, utilise and disseminate information on abnormal
events encountered in the transport of radioactive material
To draw conclusions and elaborate recommendations to further enhance safety and security of radioactive material shipments

3 GERMAN RADIOACTIVE MATERIAL TRANSPORT EVENT REVIEW AND ANALYSIS SYSTEM

The contract work concerned with the development and application of a national radioactive material transport event review and analysis system has resulted in the establishment of a computerised national database on events involving radioactive material shipments by all modes of transport. The national transport event database is operated and maintained by Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Cologne (Germany), on behalf of the national competent authority and has since 1995 periodically updated and reviewed [2].

Radioactive material transport operations involve usually a wide range of activities and operations including, for example, preparation of the radioactive material package by the consignor, loading/unloading operations, carriage in the public domain, in-transit storage, intra-/intermodal transfer and delivery of loads of radioactive material packages to the consignee at the final destination. Abnormal occurrences and irregularities (events) can occur at each of these stages of transport. The radioactive material transport event database developed covers consequently all modes, i.e. road, rail, air, sea and on inland waterways, and stages of transport in the time period from approximately 1995 through 2006 (2006 data preliminary). Transport event information excluded from the computerised event database includes: i) defence related shipments, ii) transport events within fixed establishments, iii) transport events involving consumer goods containing small quantities of radioactive substances, and iv) excess surface contamination events involving either the package or the transport vehicle of irradiated nuclear fuel shipments.

The scope and detail of event information reported or available differs usually significantly. The event details recorded in the computerised national database are broadly compatible with the IAEA Transport Event Database EVTRAM [3] and include - where available - generally the following information:

- date of event
- location of event or event discovery
- mode of transport
- type of material involved
- stage of transport
- description of the event
- type and severity of the adverse consequences
- primary cause of the event
- emergency response activities

3.1 Sources of Event Information

Information on events involving radioactive material packages and shipments has been obtained and derived from a wide number of sources of information. For each mode of transport there are specific regulatory requirements to report transport events to the competent authority if they meet certain criteria or result in serious consequences, e.g. human injuries or fatalities. In addition there are national regulatory requirements in place to report abnormal occurrences associated with the use and management of radioactive material which have proven to be a useful resource for transport event information. In practice it has been noted that abnormal transport event data are also frequently provided
and reported on a voluntary basis by consignors, carriers, consignees, emergency responders, police etc. to competent authorities and by the media.

The main sources of factual information available and used for the compilation and review of transport events in this study included inter alia: i) event information provided by national regulatory agencies (competent authorities) for the transport of dangerous goods including Class 7 material, and ii) compilations of events associated with the use and handling of radioactive material and radiation sources. The information available was generally provided in an anonymous form. In a few cases the basic information available was derived and complemented by event data taken from event occurrence reports and public media.

3.2 Event Classification

For the purpose of the review and analysis the characterisation and description of the type and nature of transport events involving radioactive material shipments has been based on the classification scheme developed for the IAEA Transport Event Database EVTRAM. The IAEA’s EVTRAM database divides abnormal occurrences and irregularities during transport in seven broad categories including the following:

- Unlawful interference: theft, malevolent acts (e.g. sabotage)
- Documents, marking, labelling: improper/absent documents etc.
- Preparation for shipment: undeclared material, wrong package etc.
- Handling during transport: package dropped, package crushed, package damaged, wet package etc.
- Loss of control of package: package lost, package misdirected etc.
- External influences: conveyance in accident, fire
- Unspecified: unknown, others

3.3 Event Significance Classification

Assessment and rating of the severity and safety significance of transport events within the German radioactive material transport event review and analysis system has essentially been based on the severity scale for radioactive material transport events developed for the IAEA’s Transport Event Database EVTRAM. The EVTRAM severity scale categorises transport events into seven broad severity classes (level 1 - 7) based on the type and magnitude of the radiological consequences and the level of degradation of the safety provisions (defence in depth) and/or the effort required to restore control, if it has been lost (e.g. through recovery/remedial measures):

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Major accident</td>
</tr>
<tr>
<td>6</td>
<td>Severe accident</td>
</tr>
<tr>
<td>5</td>
<td>Accident with significant radiological consequences</td>
</tr>
<tr>
<td>4</td>
<td>Accident with appreciable radiological consequences</td>
</tr>
<tr>
<td>3</td>
<td>Accident with limited radiological consequences</td>
</tr>
<tr>
<td>2</td>
<td>Incident with complications, affecting safety functions but no release</td>
</tr>
<tr>
<td>1</td>
<td>Incident resulting in some disruption of normal transport, without affecting safety functions</td>
</tr>
<tr>
<td>(0)</td>
<td>Non-incident (e.g. “false alarm”)</td>
</tr>
</tbody>
</table>

For the purpose of the national review and analysis of abnormal transport occurrences and irregularities presented herein the event significance classification system was arbitrarily expanded by an additional significance class (level 0) to account for (frequently) reported
non-incidents or false alarms, i.e. events that were originally reported to be a problem but on investigation nothing was found to be in error. For example, occasionally a package is reported to be leaking but closer examination identified that the liquid was rainwater.

4 TRANSPORT EVENT REVIEW AND ANALYSIS RESULTS

The nationwide survey and analysis of abnormal occurrences and irregularities involving radioactive material shipments identified a total of 495 transport events which occurred in the 10-year reporting period from approximately 1995 through 2006 in Germany and where sufficient details for each transport event were reported and available (2006 data preliminary). The annual number of transport events identified and analysed is given in Table 1 for each mode of transport, i.e. road, rail, air, and sea/inland waterways. The retrievability and availability of detailed information for transport events in the mid and late 1990s was limited. It is, however, believed that the event database contains as a result of intensified data collection procedures essentially all significant transport events since about 2000.

The type, nature and number of reported events for each mode of transport varied widely and included, for example, numerous non-events (false alarms) and minor non-compliances (e.g. deficiencies/irregularities in shipping documents) as well as vehicular transport accidents with limited radiological consequences resulting from an accidental radionuclide release into the environment. However, in the 10-year review and analysis period there were no reported transport incidents or accidents having resulted in serious exposures to ionising radiation of people (workers, members of the public) or major human health effects (physical injuries, fatalities) attributable to the radiological material properties.

Table 1: Reported Transport Events in Germany by Mode of Transport

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Road</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>Rail</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>9</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>46</td>
<td>17</td>
<td>50</td>
<td>118</td>
<td>97</td>
<td>27</td>
<td>60</td>
<td>415</td>
</tr>
<tr>
<td>Sea</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>--</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>54</td>
<td>27</td>
<td>55</td>
<td>123</td>
<td>100</td>
<td>29</td>
<td>74</td>
<td>495</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>54</td>
<td>27</td>
<td>55</td>
<td>123</td>
<td>100</td>
<td>29</td>
<td>74</td>
<td>495</td>
</tr>
</tbody>
</table>

No readily discernable and meaningful trends over the 10-year reporting period were identified in the number of transport events for the modes presented in Table 1. It is, however, of interest to note that the numbers of reported events differ significantly between the modes considered and that the numbers reported are disproportionate to the volume of radioactive material shipments for the respective mode of transport. This observation reflects primarily the existing event reporting criteria and practices for the various transport modes at the time being rather than different performance and safety standards of the various transport modes. Airlines, for example, have a longstanding tradition of reporting events while systematic event reporting for other modes is a fairly new feature and regulatory requirement.
4.1 Analysis by Type of Events

The event information generally available permitted analysis of the type and nature of the reported transport events. The result of this analysis is shown in Figure 1 (top). The figure indicates that the vast majority of reported transport events (66%) is attributable to handling failures giving rise to some kind of package damage (e.g. package dropped, crushed, run over, wet package etc.) during loading/unloading, stowage, transfer and loss of control of radioactive material packages (package lost, package misdirected etc.). These were frequently events which occurred during package handling at airport cargo centres. Improper documentation and breaches of certain technical and administrative regulatory requirements (e.g. elevated package radiation levels, undocumented contents, absent/improper labels, lack of prior notification etc.) represent with 25 percent the next largest group of transport events and irregularities in the 10-year reporting period and are likely to be related to poor preparation, lack of information and human carelessness.

Vehicular transport accidents and fires involving radioactive material packages and conveyances giving rise to some personal and/or material damage account for 3.4% and 0.2% of the reported transport events, respectively, in the 10-year review period up to the end of 2006 and are thereby relatively rare abnormal physical occurrences. The vehicular transport accidents involved - consistent with the large national transport volume by road - primarily road shipments except one which occurred on an inland waterway (ship collision). Among the remainder events were 4 (0.8%) malevolent acts (e.g. tampering of a railcar, intentional stop of a waste shipment by rail) and 2 (0.4%) cases of theft involving radioactive material packages and/or conveyances. However, none of the latter events resulted in adverse radiological consequences to people, property or the environment.

4.2 Analysis by Safety Significance of Events

The analysis of the reported abnormal transport occurrences and irregularities by safety significance of the event is shown in Figure 1 (bottom) for the 10-year review period. As described above the available events were divided in eight broad safety significance categories based on the actual or potential for radiological consequences and level of degradation of defence in depth with level 0 (non-incident) and level 1 (incident) representing the two lowest significance ratings where there were no radiological consequences. 205 (41%) non-incidents/false alarms and 273 (55%) incidents with some disruption of normal transport conditions (without affecting the package safety functions) were found to make up the largest group of reported transport events with limited or no implications on safety, although it is recognised that, for example, certain technical and administrative requirements (e.g. proper documentation, labelling) are essential for the safe transport of radioactive material.

13 (3%) transport events were rated as level 2 incidents with complications (but no package contents release) based on the severity of the level of degradation of defence in depth (i.e. deterioration of the safety functions available) and the magnitude of the attendant radiological hazard (e.g. elevated exposures) and/or loss of control of packages (temporary/permanent loss of packages). Four (1%) reported transport events qualified as level 3 incidents with limited radiological consequences in the 10-year review period based on the principal feature of having resulted in elevated personal exposures and/or environmental contamination during transport but with doses remaining within permissible limits. These were generally events and physical occurrences involving damaged packages and the subsequent environmental release of the package contents and several cases of inadequate, or loss of, shielding giving rise to elevated doses to people in close proximity to the damaged radioactive material package shipment or environmental contamination.
Packages being moved on pallets or handled for loading fall occasionally from the pallet or are dropped and are thereby vulnerable to be crushed or run over.

One of the most serious level 3-event in the reporting period was a 1998 road transport accident on a motorway in a non-urban area in Germany involving a truck load of 30 Type A packages containing radiopharmaceuticals (primarily Mo99/Tc99, I131, and Tl201). The truck turned over and the load of packages was dispersed on the motorway and some packages run over by the subsequent traffic. The detailed follow-up investigation of the transport accident revealed complete destruction of about three packages and the release and dispersal of a major fraction of its radioactive contents into the environment at the site of the accident. The accident and the resulting extended ground surface contamination required substantial emergency response activities including recovery of the packages and decontamination and/or removal of the contaminated ground surface in order to mitigate the potential accidental radiological consequences. The accident-related radiation exposures of the transport personal and members of the public were estimated to be negligible.

Figure 1: Analysis of Transport Events by Type of Event (top) and Safety Significance (bottom) in the Review Period from 1995 - 2006 in Germany
5 DISCUSSION

Systems for reporting, compilation and analysis of abnormal transport occurrences and irregularities (events) encountered in the transport and handling of radioactive material shipments are an essential tool to improve the safety and performance of transport operations by learning from such events (experience feedback) and taking appropriate corrective actions to prevent their recurrence. A systematic review and analysis of transport event information is also useful and needed for monitoring and judging trends in the adequacy and effectiveness of the regulatory and safety requirements governing the safety and security in transport and the operational measures and procedures employed by operators to drive performance and minimise non-compliances.

The national radioactive material transport event review and analysis system covers currently the 10-year reporting period from about 1995 through 2006 and contains up to the end of 2006 event information for 495 reported transport events including incidents and accidents which occurred during the transport and handling of radioactive material shipments by all modes of transport. Compared to the large number of radioactive material package shipments of about 700,000 packages per year, the number of abnormal transport events is rather small.

The 10-year transport event information available indicates that the type, nature, severity and safety significance of the reported transport events involving radioactive material shipments varies considerably ranging from non-incidents/“false alarms” over minor non-compliances with insignificant consequences - if any at all - to severe transport accidents giving rise to some radiological (and non-radiological) consequences requiring emergency response and recovery activities. The large majority (92%) of reported transport events represented “false alarms” (e.g. suspected leakage), handling failures, loss of control of packages (lost and misdirected packages) and minor non-compliances of a primarily administrative nature (e.g. improper documentation) with no radiological consequences. These types of events are likely to be attributable primarily to poor preparation of shipments, lack of information and human carelessness.

Vehicular transport accidents, fires, theft and malevolent acts involving radioactive material shipments which are generally a particular concern to the media and the public account for approximately 8 percent of the reported transport events in the 10-year review period. The radiological consequences of these events were generally limited in extent and severity. It is, however, of interest to note that the emergency response operations associated with such abnormal transport events may nevertheless be significant in terms of the time and resources required and the cost involved to regain control and to return to normal conditions of transport. Also the impact on public perception on the safety of transport operations involving radioactive material can be disastrous.

In the 10-year review and analysis period there were no reported transport events having resulted in excessive radiation exposures of workers and members of the public or major physical injuries or fatalities attributable to the radiological material properties.

From the comprehensive review and analysis of transport event information there is no firm evidence for any significant deficiencies in the existing system of national and international regulatory controls and requirements governing the safe and secure transport of radioactive material. It is, however, believed that there is a potential for improvement of the current safety record by reducing the numerous (minor) administrative non-compliances and handling failures which are likely to be attributable primarily to poor preparation, lack of information and human carelessness through appropriate information and training of the transport personnel involved.
6 CONCLUSIONS

The comprehensive review and analysis of the 10-year radioactive material transport event database available in Germany provides evidence that implementation and application of the national and international system of controls and requirements for the safe transport of radioactive material ensure a high level of protection and safety of people by minimising the potentially adverse radiological consequences of transport incidents and accidents to levels deemed to be acceptable.

The review of transport events underpins the understanding - given the large number of radioactive material shipments of about 700,000 packages per year in Germany - that transport operators have generally designed their transport programs and operations to comply with the relevant regulatory and performance requirements.

In conclusion, for more than forty years there have been no reported transport events in Germany with serious human health effects (major physical injuries and fatalities) attributable to the radiological material properties. Nonetheless, there is no room for complacency and monitoring of safety and security trends in transport will remain a continuous challenge for the parties with responsibilities for the safe transport of radioactive material, i.e. competent authorities and transport operators.

7 REFERENCES